A General Model of Random Variation

Haim Shore

Department of Industrial Engineering and Management, Ben-Gurion University, Israel

ICOSDA 2013. Mt. Pleasant. Central Michigan University. October 11-12

Why is the Box-Cox transformation so effective?

The Inverse Box-Cox Transformation (IBCT)

$$y = [1 + \lambda(\eta + \sigma z)]^{(1/\lambda)}$$

- η is a linear predictor (linear combination of co-variates);
- $\{\lambda,\sigma\}$ are parameters
- ☐ This model represents three separate models:
 - Linear ($\lambda=1$)
 - Power $(\lambda \neq 1, \lambda \neq 0)$
 - Exponential $(\lambda \rightarrow 0)$
- \square Since λ is a parameter, the IBCT spans an infinite number of monotone convex models, of which the linear and exponential are just two points on this **continuous** spectrum.

The Ladder of Monotone Convex Functions

EXPONENTIAL-EXP.-EXP.-LINEAR

EXPONENTIAL-EXP.-POWER

EXPONENTIAL-EXP.-LINEAR

EXPONENTIAL-POWER

EXPONETNAIL-LINEAR

POWER

LINEAR

First three steps of the Ladder are given by IBCT model.
 First four steps of the Ladder are given by the RMM model.
 An additional "cycle" of linear-power-exponential may be added for a "cost" of two parameters.
 Ladder is unbounded from above.

Some Examples for Ladder's Models

- **Kinetic Energy:** $E_k(V) = M(V^2/2)$ (power fun.)
- **Einstein's:** $E = MC^2 / [1-(v/C)^2]^{1/2}$ (power)
- **Radioactive Decay:** $R(t) = R_0 \exp(-kt)$ (exponential)
- □ Antoine Eq.: log(P) = A + B / (T+C) (exp.- power)
- □ Arrhenius: $R_e(T) = A \exp[-E_a/(k_B T)]$ (exp.- power)
- □ Gompertz Grth-Model: $Y = \beta_1 \exp[-\beta_2 \exp(-\beta_3 x)](\exp(-\beta_3 x))$

The RMM Model

Y= g(
$$\eta$$
, ε_1 , ε_2 ; θ) = exp{(α/λ)[($\eta + \varepsilon_1$) $^{\lambda}$ - 1] + ε_2 }
Special Cases (from the "ladder"):

- \Box Linear: $\lambda=0$, $\alpha=1$
- \square Power: $\lambda=0$, $\alpha\neq 1$
- \square Exponential-linear: $\lambda=1$
- \square Exponential-power: $\lambda \neq 0$, $\lambda \neq 1$
- □ Exponential-exponential: ??
- θ Vector of parameters

"Exponential-exponential" (??) and further "climbing up" the "ladder"??

$$g(\eta, \varepsilon_1, \varepsilon_2; \theta) = \exp\{(\alpha / \lambda)[(\eta + \varepsilon_1)^{\lambda} - 1] + \varepsilon_2\}$$

Insert:exp{ $(\beta/\kappa)[(\eta+\epsilon_1)^{\kappa}-1]$ }

For
$$\kappa=0$$
, $\beta=1$:

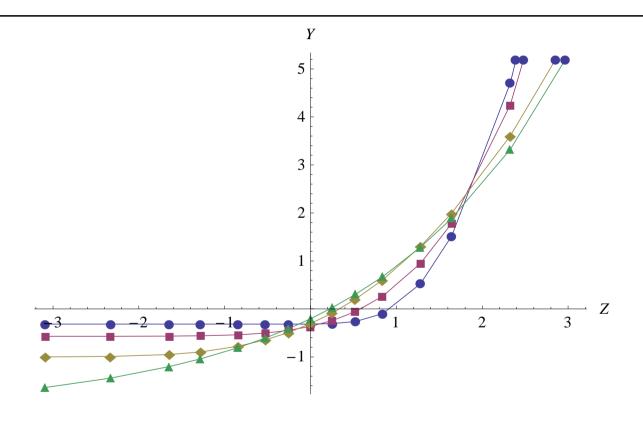
$$\exp\{(\beta/\kappa)[(\eta+\epsilon_1)^{\kappa}-1]\}=\eta+\epsilon_1$$

Important result: Adding two parameters allows a repeat of the cycle "Linear-power-exponential", while "climbing" the ladder!!

Conclusion:

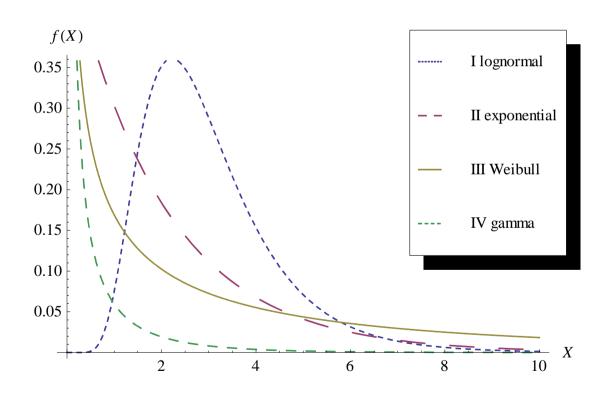
All monotone-convex relationships, traditionally represented by "single-point" models, belonging to the "Ladder", may now be represented by a single RMM model, which delivers "monotone convexity" as a continuous spectrum!!

Four Monotone Convex Funtions

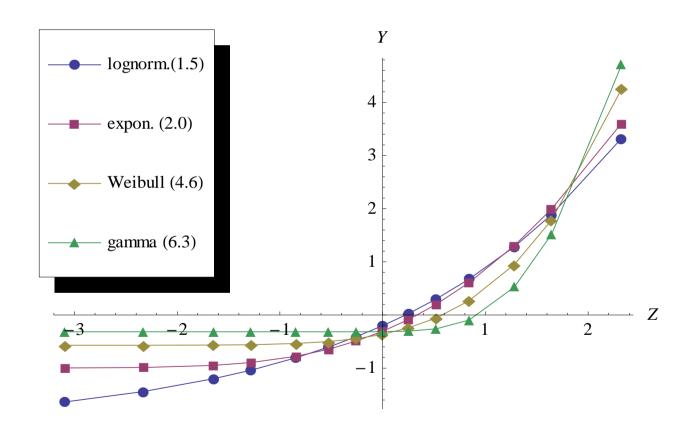


What models may these curves represent?

Four asymmetrical distributions



Respective Quantile Functions in terms of Standard Normal Quantiles (with Sk values)



Basic idea of a "General model of random variation":

Any Z-based quantile function (of a unimodal

distribution) may be modeled well via RMM due to

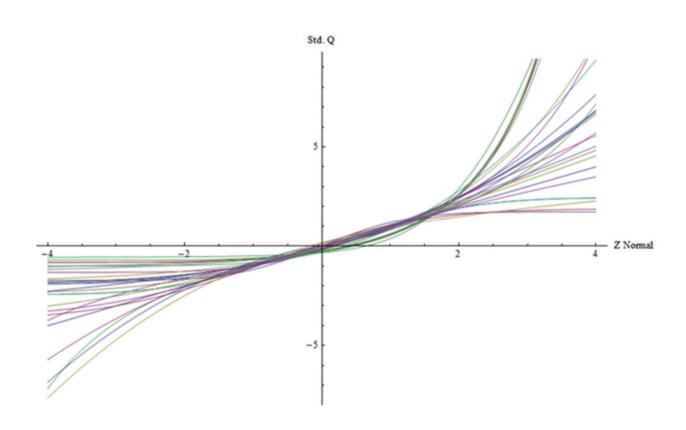
its unique property of

Continuous Monotone Convexity (CMC)

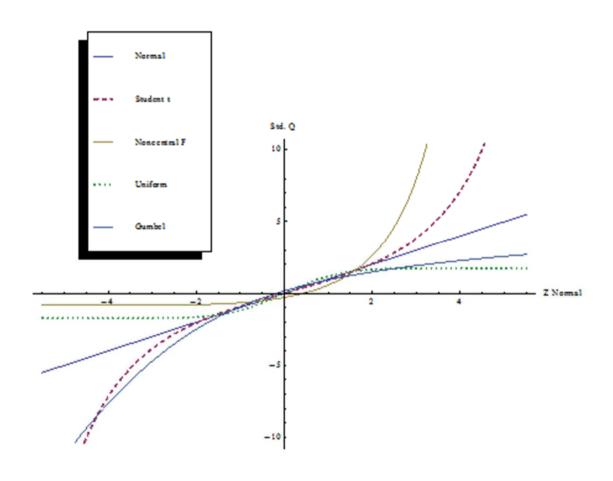
Some references (where this idea was examined or implemented):

- Shore, H. (2005). *Response Modeling Methodology- Empirical Modeling for Engineering and Science*. World Scientific Publishing Co. Ltd., Singapore.
- Shore, H. (2005). Accurate RMM-based Approximations for the CDF of the Normal Distribution. *Communications in Statistics (Theory&Methods)*, 34(2). 507-513.
- Shore, H. (2007). Comparison of Generalized Lambda Distribution (GLD) and Response Modeling Methodology (RMM) as general platforms for distribution fitting. *Communications in Statistics (Theory&Methods)*. 36(15). 2805-2819.
- Shore, H. (2008). Distribution fitting with response modeling methodology (RMM) some recent results, *American Journal of Mathematical and Management Sciences*, 28, 1&2, 3-18.
- Shore, H., A'wad, F. (2010). Statistical comparison of the goodness-of-fit delivered by five families of distributions used in distribution fitting. *Communications in Statistics (Theory&Methods)*. 39(10), 1707-1728.

Z-based QF of 27 Distributions



Z-based Quantile Functions of 4 distributions



Conclusions

Skewness and kurtosis jointly determine the *general* shape of $Q_{\gamma}(z;\theta)$ as follows:

- All symmetric r.v.s have S-shaped $Q_Y(z;\theta)$, for negative kurtosis, inverted S-shaped, for positive kurtosis, and linear, for Y normal;
- All non-symmetric r.v.s have $Q_{\gamma}(z;\theta)$ that, as skewness departs from zero, gradually transforms from S-shaped to monotone convex, for positively skewed distributions, or to monotone concave, for negatively skewed distributions;

Final General Model

A weighted average of the Z-based standardized QF of an inherently-symmetric distribution (ISD) and of a non-ISD distribution:

$$\tilde{Q}_{x}(z;\tilde{\theta}) = (w) \frac{g(z;\beta) - g(-z;\beta)}{(2\sigma_{Y})} + (1-w) \frac{g(z;\beta) - \mu_{Y}}{\sigma_{Y}}.$$

 $g(z;\beta)$ – An RMM model for Z-based quantile function (next slide)

w – weight, determined to preserve the median of the distribution

For ISD (w=1) – Basic structure of Taylor series is preserved (odd-order powers)

RMM Z-based Quantile Function (QF)

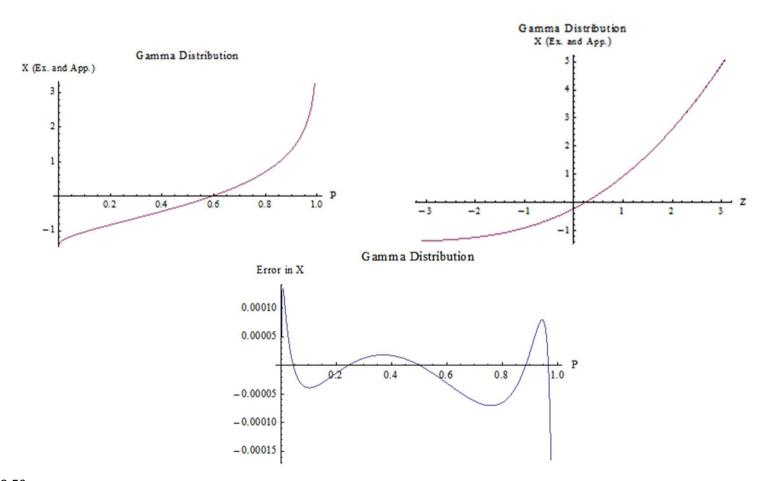
 \square Original RMM QF (M_Y is median):

$$\log(y-L) = g(z;\beta) = \log(M_Y - L) + \left(\frac{a}{b}\right)[(1+cz)^b - 1] + dz + \varepsilon,$$

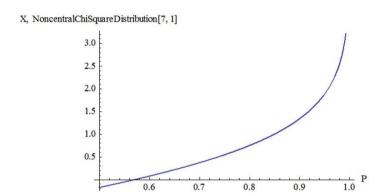
 \square An approximate expression (cz << 1):

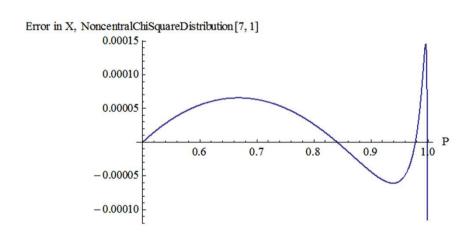
$$\log(y-L) = \log(M_Y - L) + \left(\frac{a}{b}\right)(e^{bz} - 1) + cz + \varepsilon.$$

Example: Gamma

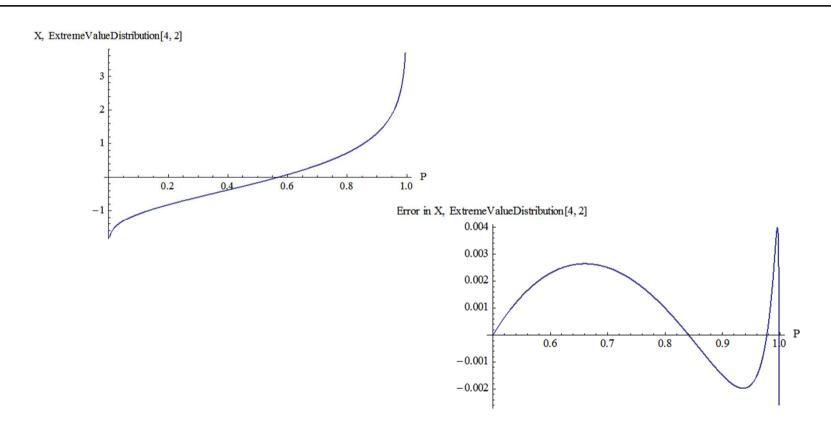


Example: Non-central Chi-square (7,1)





Example: Extreme Value (4,2)



Further Details:

Shore, H. (2013). A General Model of Random Variation. *Comm. in Statistics* (*Theory&Methods*). Forthcoming.

Thank you

(shor@bgu.ac.il)