Categories
My Research on the Bible and Biblical Hebrew Shorties

Values of Hebrew Day-Names in Genesis 1 Represent Ordinal Positions

All week-days in Genesis 1 have specific names.

These are (Hebrew. left to right):

Echad (“One”; Sunday); Sheni (“Second”; Monday); Shlishi (“Third”; Tuesday); Reviee (“Fourth”; Wed.); Chamishi (“Fifth”; Thurs.); Yom Ha-Shishi (“The Sixth Day”; Friday); Yom Ha-Sheviee (“The Seventh Day”; Sat.) or Shabbat (Sabbath).

Each of these biblical Hebrew names has a specific numerical value, the sum total of the numeric values of the Hebrew letters comprising the name.

Do these values represent the ordinal position of the days they represent?

Pursuing the same method used by me throughout my research of the Bible and biblical Hebrew (namely, “linear plot indicates same set of values, represented by two different scales”), the attached plot, with the explanatory comments that follow, seem to support the claim expressed in the title of this post:

,

Categories
Podcasts (audio)

Punishment vs. Guidance — Explaining Adverse Outcome of Well-intentioned Behavior (Podcast)

“Why Bad Things Happen to Good People?”

A somewhat original insight to an age-old mystery:

Categories
General Podcasts (audio)

How Israel Transformed from a Land of Common-Sense to a Bastion of Formalities (Podcast)

A magnifying glass directed at the fundamental transformation that the Israeli society is going through, shifting personal responsibility, mandated by free-will, to the responsibility of court of law:

Categories
Podcasts (audio)

Why Trust Bible Prophets?? (Podcast)

Israelite prophets, whose prophecies are everywhere in the Jewish Bible, right left and center, explicitly stated that God, the creator of “The Heaven and The Earth”, had spoken to them.

Should we trust them?

((Find complete post at: Why do I Trust the Biblical Prophets??)

Categories
Podcasts (audio)

Black Holes and Near-Death Experience (NDE) — A One-way Flow of Information (Podcast)

One-way flow of Information is characteristic to black holes. However, it also forms the basic human condition, regarding communicating with “the other side”. Is this similarity coincidental?

Categories
General Shorties

Black Holes and Near-Death Experience (NDE) — A One-way Flow of Information

Black Hole is a place in space where gravity pulls so much that even light can not escape. There are three different types of black holes: Tiny, stellar or supermassive (Source: NASA NASA: what-is-a-black-hole?). Scientists have found proof that every large galaxy contains a supermassive black hole at its centre. The supermassive black hole at the centre of the Milky Way galaxy is called Sagittarius A. It has a mass equal to about 4 million suns and would fit inside a very large ball that could hold a few million Earths.

Near Death Experience (NDE) is a testimony, delivered by individuals who have biologically died, however have been resuscitated to normal life. The testimony delivers the experience an individual went through while the medical team struggles to return that individual to life. NDE is well documented for many years. An example of a recent report of NDE, one of many, is by Shaman Oaks (Jan., 2022):

Man Shocked by What He Saw His Pets Doing in Heaven

There are several features shared by most testimonies of NDE, like “flying” through a black tunnel, total life-review and others.

A basic condition of human life on planet Earth is our total ignorance of where we have come from, or where do we go after we die (if indeed the soul survives the body). This basic life-condition represents to us a unique experience of a one-way flow of information. We are aware of information we produce while we live, or information we are exposed to. Yet we are blocked from any information beyond our life-span, namely, pre-birth or post-death.

A similar statement of our basic human condition may be traced to the first verse of Genesis:

“In the beginning God created The Heaven and The Earth”.

We know much about The Earth (the universe), yet nothing about The Heaven. Indeed, the Bible does not describe the nature of The Heaven, neither does it explicitly refer to it anywhere else in the Jewish Bible, except for the first verse of Genesis (an exception is a single verse, which may be interpreted as describing a hidden two-way communication between humankind and The Heaven (of Genesis 1:1); Find details in this post:

The basic human condition: “Angels of God ascending and descending”.)

These four types of experience (or source of knowledge), accessible to us all, testify to the most fundamental of human condition on Planet Earth:

  • Total ignorance of where we came from (pre-birth), and where do we go from here (post-death, if at all);
  • Deafening silence (lack of explicit communication) on behalf of the “other side”;
  • Supportive testimonies of individuals (NDE), explicitly stating that to preserve free-will, while shaping our life-experience, we are not amenable to glimpses of the “other side” (except, occasionally, via NDE, or messages delivered by uniquely gifted mediums, spiritualists);
  • Lack of any knowledge of The Heaven (existence of which is explicitly stated in the first verse of Genesis).

There is one commonality shared by them all:

One-way flow of information.

Information of what play out here, on earth, is known and exposed to the “other side” (as revealed by NDE reports); Yet, we do not receive explicit communication from the “other side”, barring the possibility of a dual-way mode of communication!!!

These features of our everyday experience on Planet Earth share a surprising commonality with the most basic property of black holes — absorbing from the physical universe, as we know it, but never leaking back information, in the form of matter, energy or any other conceivable form of information (dark energy?).

This stunning similarity between the physical properties of black holes (the one-way flow of information), and the most fundamental condition experienced by us on Planet Earth (as expounded earlier), this similarity naturally begs the question:

Do black holes form one-way exit avenues, through which our souls are doomed to pass after we die?

Categories
My Research in Statistics

Where Statistics Went Wrong? And Why?

  1. Introduction

Is Statistics, a branch of mathematics that serves central tool to investigate nature, heading in the right direction, comparable to other branches of science that explore nature?

I believe it is not.

This belief is based on my own personal experience in a recent research project, aimed to model surgery time (separately for different subcategories of surgeries). This research effort culminated in a trilogy of published articles (Shore 2020ab, 2021). The belief is also based on my life-long experience in academia. I am professor emeritus, after forty years in academia and scores of articles published in refereed professional journals, dealing both with the theory and application of Statistics. In this post, I deliver an account of my recent personal experience with modeling surgery time, and conclusions I have derived thereof, and from my own cumulative experience in the analysis of data and in data-based modeling.

The post is minimally technical, so that a layperson, with little knowledge of basic terms in Statistics, can easily understand.

We define a random phenomenon as one associated with uncertainty, for example, “Surgery”. A random variable (r.v) is any random quantitative property defined on a random phenomenon. Examples are surgery medical outcome (Success:  X=1; Failure: X=0), surgery duration (X>0) or patient’s maximum blood pressure during surgery (Max. X).

In practice, an r.v is characterized by its statistical distribution. The latter delivers the probability, P (0≤P≤1), that the random variable, X, assumes a certain value (if X is discrete), or that it will fall in a specified interval (if X is continuous). For example, the probability that surgery outcome will be a success, Pr(X=1), or the probability of surgery duration (SD) to exceed one hour, Pr(X>1).

Numerous statistical distributions have been developed over the centuries, starting with Bernoulli (1713), who derived what is now known as the binomial distribution, and Gauss (1809), deriving the “astronomer’s curve of error”, nowadays known as Gauss distribution, or the normal distribution. Good accounts of the historical development of the science of probability and statistics to its present-day appear at Britannica and Wikipedia, entry History_of_statistics.

A central part of these descriptions is, naturally, the development of the concept of statistical distribution. At first, the main source of motivation was games of chance. This later transformed into the study of errors, as we may learn from the development of the normal distribution by Gauss. In more recent years, emphasis shifted to describing random variation as observed in all disciplines of science and technology, resulting, to date, in thousands of new distributions. The scope of this ongoing research effort may be appreciated by the sheer volume of the four-volume Compendium on Statistical Distributions by Johnson and Kotz (First Edition 1969–1972, updated periodically with Balakrishnan as an additional co-author).

The development of thousands of statistical distributions over the years, up to the present, is puzzling, if not bizarre. An innocent observer may wonder, how is it that in most other branches of science, the historical development shows a clear trend towards convergence, while in modeling random variation, the most basic concept to describe processes of nature, the opposite has happened, namely, divergence?

Put in more basic terms: Why in science, in general, a continuous attempt is exercised to unify, under an umbrella of a unifying theory, the “objects of enquiry” (forces in physics; properties of materials in chemistry; human characteristics in biology), while in the mathematical modelling of random variation, this has not happened? Why in Statistics, the number of “objects of enquiry”, instead of diminishing, keeps growing?

And more succinctly: Where did Statistics go wrong? And why?

I have already had the opportunity to address this issue (the miserable state-of-the-art of modelling random variation) some years ago, when I wrote (Shore, 2015):

“ “All science is either physics or stamp collecting”. This assertion, ascribed to physicist Ernest Rutherford (the discoverer of the proton, in 1919) and quoted in Kaku (1994, p. 131), intended to convey a general sentiment that the drive to converge the five fundamental forces of nature into a unifying theory, nowadays a central theme of modern physics, represents science at its best. Furthermore, this is the right approach to the scientific investigation of nature. By contrast, at least until recently, most other scientific disciplines have engaged in taxonomy (“bug collecting” or “stamp collecting”). With “stamp collecting” the scientific inquiry is restricted to the discovery and classification of the “objects of enquiry” particular to that science, however this never culminates, as in physics, in a unifying theory, from which all these objects may be deductively derived as “special cases”. Is statistics a science in a state of “stamp collecting”?”

This question remains valid today, eight years later: Why has the science of Statistics, as a central tool to describe statistically stable random phenomena of nature, has deviated so fundamentally from the general trend at unification?

In Section 2, we enumerate the errors that, we believe, triggered this departure of Statistics from the general trend in the scientific study of nature, and outline possible outlets to eliminate these errors. Section 3 is an account of the personal learning experience that I have gone through while attempting to model surgery duration and its distribution. This article is a personal account, for the naive (non-statistician) reader, of that experience. As alluded to earlier, the research effort resulted in a trilogy of articles , and in the new “Random identity paradigm”. The latter is addressed in Section 4, where new concepts, heretofore ignored by Statistics, are introduced (based on Shore, 2022). Examples are “Random identity”, “identity variation”, “losing identity” (with characterization of the process), and “Identity-full/identity-less distributions”. These concepts are underlying a new methodology to model observed variation in natural processes (as contrasted with variation of r.v.s that are mathematical function of other r.v.s).The new methodology is outlined, based on Shore, 2022. Section 5 delivers some final thoughts and conclusions.

  1. The historical errors embedded in current-day Statistics

Studying the history of the development of statistical distributions to date, we believe Statistics departure from the general trend, resulting in a gigantic number of “objects of enquiry” (as alluded to earlier), may be traced to three fundamental, inter-related, errors, historically committed within Statistics:

Error 1: Failure to distinguish between two categories of statistical distributions:

Category A: Distributions that describe observed random variation of natural processes;

Category B: Distributions that describe behavior of statistics, namely, of random variables that are, by definition, mathematical functions of other random variables.

The difference between the two categories is simple: Category A succumbs to certain constraints on the shape of distribution, imposed by nature, which Category B does not (the latter succumbs to other constraints, imposed by the structure of the mathematical function, describing the r.v). As we shall soon realize, a major distinction between the two sets of constraints (not the only one) is the permissible values for skewness and kurtosis. While for Category A, these fluctuate in a specified interval, confined between values of an identity-full distribution and an identity-less distribution (like the normal and the exponential, respectively; both types of distribution shall be explained soon), for Category B such constraints do not hold.     

Error 2: Ignoring the real nature of error:

A necessary condition for the existence of an error, indeed a basic assumption integrated implicitly into its classic definition, is that for any observed random phenomenon, and the allied r.v, there is a typical constant, an outcome of various factors inherent to the process/system (“internal factors”), and there is error (multiplicative or additive), generated by random factors external to the system/process (“external factors”). This perception of error allows its distribution to be represented by the normal, since the latter is the only one having mean/mode (supposedly determined by “internal factors”) disconnected from the standard deviation, STD (supposedly determined by a separate set of factors, “external factors”).

A good representative of the constant, relative to which error is defined, is the raw mode or the standardized mode (raw mode divided by the STD). As perceived today, the error indeed expresses random deviations from this characteristic value (the most frequently observed value).

What happens to the error, when the mode itself ceases to be constant and becomes random? How does this affect the observed random variation or, more specifically, how is error then defined and modelled?

Statistics does not provide an answer to this quandary, except for stating that varying “internal factors”, namely, non-constant system/process factors, may produce systematic variation, and the latter may be captured and integrated into a model for variation, for example, via regression models (linear regression, nonlinear regression, generalized linear models and the like). In this case, the model ceases to represent purely random variation (as univariate statistical distributions are supposed to do). It becomes a model for systematic variation, coupled with a component of random variation (the nature of the latter may be studied by “freezing” “internal factors” at specified values). It is generally assumed in such models that a single distribution represents the component of random variation, though possibly with different parameters’ values for different values of the systematic effects, integrated into the model. Thus, implementing generalized linear models, the user is requested to specify a single distribution (not several), valid for all different sets of the effects’ values. As we shall soon learn (Error 3), “internal factors” may produce not only systematic effects, as currently wrongly assumed, but also a different component of variation, unrecognized to date. It will be addressed next as the third error.

Error 3: Failure to recognize the existence of a third type of variation (additional to random and systematic) — “Identity variation”:

System/process factors may potentially produce not only systematic variation, as currently commonly assumed, but also a third component of variation, passed under the radar, so to speak, in the science of Statistics. Ignoring this type of variation is the third historic error of Statistics. For reasons to be described soon (Sections 3 and 4), we denote this unrecognized type of variation — “Identity variation”.

  1. Modeling surgery duration — Personal learning experience that resulted in the new “Random identity paradigm”

I have not realized the enormity of the consequences of the above three errors, committed within Statistics to date, until a few years ago, when I have embarked on a comprehensive research effort to model the statistical distribution of surgery duration (SD), separately for each of over a hundred medically-specified subcategories of surgeries (the latter defined according to a universally accepted standard; find details in Shore 2020a). The subject (modeling SD distribution) was not new to me. I had been engaged in a similar effort years ago, in the eighties of the previous century (Shore, 1986). Then, based on analysis of available data and given the computing facilities available at the time, I divided all surgeries (except open-heart surgeries and neurosurgeries), into two broad groups: short surgeries, which were assumed to be normally distributed, and long surgeries, assumed to be exponential. There, for the first time, I have become aware of “Identity variation”, though not so defined, which resulted in modeling SD distribution differently for short surgeries (assumed to pursue a normal distribution) and long ones (assumed to be exponential). With modern available computing means, and with my own cumulative experience since publication of that paper (Shore, 1986), I thought, and felt, that a better model may be conceived, and embarked on the new project. 

Probing into the available data (about ten thousand surgery times with affiliated surgery subcategories), four insights/observations were apparent:

1. It was obvious to me that different subcategories pursue different statistical distributions, beyond just differences in values of distribution’s parameters (as currently generally assumed in modeling SD distribution);

2. Given point (1), it was obvious to me that differences in distribution between subcategories should be attributed to differences in the characteristic level of work-content instability (work-content variation between surgeries within subcategory);

3. Given points (1) and (2), it was obvious to me that this instability cannot be attributed to systematic variation. Indeed, it represents a different type of variation, “identity variation”, to-date unrecognized in the Statistics literature (as alluded to earlier);

4. Given points (1) to (3), it was obvious to me that any general model of surgery time (SD) should include the normal and the exponential as exact special cases.

For the naive reader, I will explain the new concept, “identity variation”. Understanding this concept will render all of the above insights clearer.

As an industrial engineer in profession, it was obvious to me, right from the beginning of the research project, that, ignoring negligible systematic effects caused by covariates (like the surgeon performing the operation), a model for SD, representing only random variation in its classical sense, would not be adequate to deliver proper representation to the observed variation. Changes between subcategories in the type of distribution, as revealed by changes in distribution shape (from the symmetric shape of the normal to the extremely non-symmetric of the exponential, as first noticed by me in the earlier project, Shore, 1986),  these changes have made it abundantly clear that the desired SD model should account for “identity loss”, occurring as we move from a repetitive process (subcategory with repetitive surgeries, having characteristic/constant work-content) to a memory-less non-repetitive process (subcategory with surgeries having no characteristic common work-content). As such, the SD model should include, as exact special cases, the exponential and the normal distributions.

What else do we know of the process of losing identity, as we move from the normal to the exponential, which account for “identity variation”?

In fact, several changes in distribution properties accompany “identity loss”. We relate again to surgeries. As work processes in general, surgeries too may be divided into three non-overlapping and exhaustive set of groups: repetitive, semi-repetitive and non-repetitive. In terms of work-content, this implies:

  • Work-processes with constant work-content (only error generates variation; SD normally distributed);
  • Semi-repetitive work-processes (work-content varies somewhat between surgeries, to a degree dependent on subcategory);
  • Memory-less work-processes (no characteristic work-content; For example, surgeries performed within an emergency room for all types of emergency, or service performed in a pharmacy, serving customers with varying number of items on the prescription list).

Thus, work-content, however it is defined (find an example in Shore, 2020a), forms “surgery identity”, with a characteristic value, the mode, that vanishes (becomes zero) for the exponential scenario (non-repetitive work-process).    

Let us delve somewhat deeper into the claim that a model for SD should include the normal and the exponential as exact special cases (not merely asymptotically, as, for example, the gamma tends to the normal).

There are four observations/properties, which put the two distributions, the identity-full normal and the identity-less exponential, apart from other distributions:

Observation 1: The mean and standard deviation are represented by different parameters for the normal distribution, and by a single parameter for the exponential. This difference is reflection of a reality, where, in the normal scenario, a set of process/system factors (“internal factors”) produces signal only, and a separate set (“external factors”) produces noise only (traditionally modelled as a zero-mean symmetrically distributed error). Moving away from the normal scenario to the exponential scenario, we witness a transition towards merging of the mean with the standard deviation, until, in the exponential scenario, both signal and noise are produced by the same set of factors — the mean and standard deviation merge to be expressed by a single parameter. The clear distinction, between “system/process factors” and “external/error factors”, typical to the normal scenario, this distinction has utterly vanished;

Observation 2: The mode, supposedly representing the typical constant on which the classical multiplicative error is defined in the normal scenario, this mode, or rather the standardized mode, shrinks, as we move away from the normal to the exponential. This movement, in reality, represents passing through semi-repetitive work-processes, with increasing degree of work-content instability. The standardized mode finally disappears (becoming zero) in the exponential scenario. What does this signify? What are the implications?

Observation 3: For both the normal and the exponential, skewness and kurtosis are non-parametric. Why is that, and what does this signify?

Observation 4: What happens to the classic error, when the r.v moves away from the normal scenario to the exponential? Can we still hold on to the classic definition of error, given that “internal factors”, assumed to generate a constant mode (signal), these factors start to produce noise? How would then error (in its classical sense) be re-specified? Can an error be defined at all?

All these considerations, as well as the need to include semi-repetitive surgeries within the desired model, brought me to the realization that we encounter here a different type of variation, heretofore unrecognized and not addressed in the literature. The instability of work-content (within subcategory), which I have traced to be the culprit for change in distribution as we move from one subcategory to another, could not possibly be regarded as cause for systematic variation. The latter is never assumed to change the shape of distribution, only at most its first two moments (mean and variance). This is evident, for example, on implementing generalized linear models, a regression methodology frequently used to model systematic variation in a non-normal environment. The user is requested to specify a single distribution (normal or otherwise), never different distributions for different sets of values of the effects being modeled (supposed delivering systematic variation). Neither can work-content variation be considered part of the classic random variation (as realized in Category A distributions) since the latter assumes existence of a single non-zero mode (for a single non-mixture univariate distribution), not zero mode or multiple modes (as, for example, with the identity-less exponential (zero mode), its allied Poisson distribution (two modes for an integer parameter), or the identity-less uniform (infinite number of modes); find details in Shore, 2022).

A new paradigm was born out of these deliberations — the “Random identity paradigm”. Under the new paradigm, observed non-systematic variation is assumed to originate in two components of variation: random variation, represented by a multiplicative normal/lognormal error, and identity variation, represented by an extended exponential distribution. A detailed technical development of this methodology, allied conjectures and their empirical support (from known theory-based results) are given in Shore (2022; A link to a pre-print is given at the References section). In the next Section 4 we deliver an outline of the “Random identity paradigm”.

  1. The “Random identity paradigm” — “Random identity”, “Identity variation”, “identity loss”, “identity-full/identity-less distributions” (based on Shore, 2022)

The insights, detailed earlier, have led to the development of the new “Random identity paradigm”, and its allied explanatory two-variate model for SD (Shore, 2020a). The model was designed to fulfill an a-priori specified set of requirements. Central among these is that the model includes the normal and the exponential distributions as exact special cases. After implementing the new model for various applications (as alluded to earlier), we have arrived at the realization that the model used in the article may, in fact, be expanded to introduce a new type of random variation, “random identity variation”, which served the basis for the new “Random Identity Paradigm” (Shore, 2022).

A major outcome of the new paradigm is the definition of two new types of distributions, an identity-full distribution and an identity-less distribution, and a criterion to diagnose a given distribution as “identity-full”, “identity-less”, or in between. Properties of identity-less and identity-full distributions are described, in particular, the property that such distributions have non-parametric skewness and kurtosis, namely, both types of distribution assume constant values, irrespective of values assumed by distribution parameters. Another requirement, naturally, is that the desired model includes a component of “identity variation”. However, the requirement also specifies that the allied distribution (representing “identity variation”) have support with the mode, if it exists, as its extreme left point (detailed explanation is given in Shore, 2022). As shown in Shore (2020ab, 2021, 2022), this resulted in defining the exponential distribution anew (the extended exponential distribution), adding a parameter, α, that assumes a value of α=0, for the exponential scenario (error STD becomes zero), and a value tending to 1, as the model moves towards normality (with “identity variation”, expressed in the extended exponential by parameter σi, tending to zero).

Sparing the naive reader the technical details of the complete picture, conveyed by the new “Random identity paradigm” (Shore, 2022), we outline herewith the associated model, as used in the trilogy of published paper.

The basic model is given in eq. (1):

Haim Shore_Equations_The Problem with Statistics_January 26 2022

where R is the observed response (an r.v), L and S are location and scale parameters, respectively, Y is the standardized response (L=0, S=1), {Yi ,Ye} are independent r.v.s representing internal/identity variation and external/error variation, respectively, ε is zero-mode normal disturbance (error) with standard deviation σε and Z is standard normal. The density function of the distribution of Yi in this model (the extended exponential) is eq. (2), where Yi is the component representing “identity variation” (caused by variation of system/process factors, “Internal factors”), CYi is a normalizing coefficient, and σi is a parameter representing internal/identity variation. It is easy to realize that α is the mode. At α=1, Yi becomes left-truncated normal (re-located half normal). However, it is assumed that at α=1 “identity variation” vanishes, so Yi becomes a constant, equal to the mode (1). For the exponential scenario (complete loss of identity), we obtain α=0, and the disturbance, assumed to be multiplicative, renders meaningless, namely, it vanishes (σe=0, Ye=1). Therefore, Yi and Y then both become exponential.

Let us introduce eq. (3).  From (2), we obtain the pdf of Zi: (eqs. (4) and (5)). Note that the mode of Zi is zero (mode of Yi is α).

Various theorems and conjectures are articulated in Shore (2022), which deliver eye-opening insights into various regularities in the behavior of statistical distributions, previously un-noticed, and good explanation to various statistical theoretical results, heretofore considered separate and unrelated (like a logical derivation of the Central Limit Theorem from the “Random identity paradigm”).

  1. Conclusions

In this article, I have reported about my personal experience, which led me to the development of the new “Random identity paradigm” and allied concepts. It followed my research effort to model surgery duration, which resulted in a bi-variate explanatory model, with the extended exponential distribution as the intermediate tool, that paved a smooth way to unify, under a single umbrella model, execution times of all types of work processes/surgeries, namely, not only repetitive (normal), or non-repetitive (exponential), but also those in between (semi-repetitive processes/surgeries). To date, we are not aware of a similar unifying model that is as capable in unifying diverse phenomena as the three categories of work-processes/surgeries. Furthermore, this modeling effort has led directly to conceiving the new “Random identity paradigm” with allied new concepts (as alluded to earlier).

The new paradigm has produced three major outcomes:

First, as demonstrated in the linked pre-print, under the new paradigm virtually scores of theoretical statistical results that have formerly been derived independently and considered unrelated, are explained in a consistent and coherent manner, becoming inter-related under the unifying “Random identity paradigm”.

Secondly, various conjectures about properties of distributions are empirically verified with scores of examples/predictions from the Statistics literature. For example, the conjectures that Category B r.v.s, which are function of only identity-less r.v.s, are also identity-less, and similarly for identity-full r.v.s.

Thirdly, the new bi-variate model has been demonstrated to represent well numerous existent distributions, as has been shown for diversely-shaped distributions in Shore, 2020a (see Supplementary Materials therein).

It is hoped that the new “Random identity paradigm”, representing an initial effort at unifying distributions of natural processes (Category A distributions), this new paradigm may pave the way for Statistics to join other branches of science in a common effort to reduce, via unification mediated by unifying theories, the number of statistical distributions, the “objects of enquiry” of modeling random-variation within the science/branch-of-mathematics of Statistics.

References

[1] Shore H (1986). An approximation for the inverse distribution function of a combination of random variables, with an application to operating theatres. Journal of Statistical Computation and Simulation, 23:157-181. DOI: 10.1080/00949658608810870 .

[2] Shore H (2015). A General Model of Random Variation. Communication in Statistics- Theory and Methods, 49(9):1819-1841. DOI: 10.1080/03610926.2013.784990.

[3] Shore H (2020a). An explanatory bi-variate model for surgery-duration and its empirical validation. Communications in Statistics: Case Studies, Data Analysis and Applications, 6(2):142-166. Published online: 07 May 2020. DOI: 10.1080/23737484.2020.1740066

[4] Shore H (2020b). SPC scheme to monitor surgery duration. Quality and Reliability Engineering International. Published on line 03 December 2020. DOI: 10.1002/qre.2813

[5] Shore H (2021). Estimating operating room utilisation rate for differently distributed surgery times. International Journal of Production Research. Published on line 13 Dec 2021. DOI: 10.1080/00207543.2021.2009141.

[6] Shore H (2022). “When an error ceases to be error” — On the process of merging the mean with the standard deviation and the vanishing of the mode. Preprint.

Haim Shore_Blog_Merging of Mean with STD and Vanishing of Mode_Jan 07 2022

 

Categories
Podcasts (audio)

“Shamayim” — The Most Counter-intuitive Yet Scientifically Accurate Word in Biblical Hebrew (Podcast)

The deeper meaning and implications of the biblical Hebrew Shamayim (Sky; A post of same title may be found here ):

Categories
My Research on the Bible and Biblical Hebrew Shorties

“Shamayim” — The Most Counter-intuitive Yet Scientifically Accurate Word in Biblical Hebrew

The word Shamayim in Hebrew simply means Sky (Rakia in biblical Hebrew; Genesis 1:8):

“And God called the Rakia Shamayim, and there was evening and there was morning second day”.

Rakia in biblical Hebrew, like in modern Hebrew, simply means sky.

So why, in the first chapter of Genesis, is the sky Divinely called Shamayim?

And why, according to the rules of biblical Hebrew, is it fundamentally counter-intuitive, yet, so scientifically accurate?

The word Shamayim comprises two syllables. The first is Sham, which simply means there, namely, that which is inaccessible from here. The second syllable, ayim, is a suffix, namely, an affix added to the end of the stem of the word. Such suffix in added, in Hebrew, to words that represent a symmetric pair of objects, or, more generally, to words that represent objects that appear in symmetry. Thus, all visible organs in the human body that appear in pairs have same suffix, like legs (raglayim), hands (yadayim), eyes (einayim) and ears (oznayim). However, teeth, arranged in symmetry in the human mouth, though not in pairs, also have same suffix. Teeth in Hebrew is shinayim. Other examples may be read in my book at Chapter 5.

Let us address the two claims in the title:

  • Why Shamayim is counter-intuitive?
  • Why is Shamayim so scientifically accurate?

The answer to the first claim is nearly self-evident. When one observes the sky, at dark hours, the observed is far from symmetric. So much so that the twelve Zodiacal constellations had to be invented, in ancient times, to deliver some sense to the different non-symmetric configurations of stars that to this day can be observed by the naked eye in the sky.

Yet, despite the apparent non-symmetry observed in the sky, the Divine chose to grant the sky a word indicative of the most fundamental property of the sky, as we have scientifically learned it to be in recent times, namely, its symmetry (as observed from Plant Earth), or its uniformity (as preached by modern cosmology).

To learn how fundamentally uniform (or symmetric) the universe is, the reader is referred to Chapters 5 and 7 of my book, and references therein. Another good source to learn about the uniformity of the universe, as observed via telescopes and as articulated by modern science, is the excellent presentation by Don Lincoln at Wondrium channel:

https://www.youtube.com/watch?v=CRQvp3XPH_s

Note the term Desert, addressed in the lecture. The term is used, in modern cosmology, to denote the uniformity of the universe at the Big Bang (“In the beginning”).

Surprisingly, the words, Tohu Va-Vohu, describing the universe “in the beginning” (Genesis 1:2), are also associated with desert, as they are employed elsewhere in the Hebrew Bible.

Consider, for example Jeremiah (4:23, 26):

“I beheld the earth, and, lo, it was Tohu Va-Vohu…I beheld and, lo, the fruitful land has become the desert…”.

Refer also to Isaiah (34:11).

So:

  • Shamayim is counter-intuitive and at odds with the picture, revealed in ancient times to the naive observer, our pre-science ancestors;
  • Shamayim yet accurately describes current scientific picture of the universe, as formed in the last hundred years or so, based on cumulative empirical data (gathered via telescopes), and based on modern theories of the evolution and structure of the universe.

Articulated more simply:

Whatever direction in the sky you point to, Shamayim states that it is all the same, contrary to what the naked eyes are telling us, in conformance with what modern science is telling.

Personal confession, mind boggling…

Categories
My Research on the Bible and Biblical Hebrew Shorties

In biblical Hebrew — “Yom” is not necessarily “Day”

In a recent post (and an accompanying podcast), we have shown that Erev and Boker, in Genesis creation narrative (Genesis 1), do not represent “Evening” and “Morning”, as commonly interpreted, and as traditionally assumed. Rather, these two words represent, respectively, two states — one of “Mixture”, Erev, the other of its opposite, Boker (outcome of sorting out the mixture into its constituents, namely, a state of “non-mixture”).

Does Yom in Genesis 1 mean “Day” (as commonly translated into English)?

Or perhaps the word, as used elsewhere in the Hebrew Bible, has a more general meaning, denoting, simply and non-specifically, “Period of time”?

To answer this intriguing question, we inspect verses in the Jewish Hebrew Bible, where Yom is used. The latter appears therein, with variations, no less than 2291 times. Naturally, in most cases Yom, and its variations, represent “Day”.

But…not always and not necessarily so.

We find out that in a considerable proportion of the verses, Yom simply denotes “Period”, whether in the future (future period, “in/on that day”) or currently (present period, “to this day”). We note that “Time”, in the common sense, does not appear at all in the Bible (where it rarely does appear, it means exclusively a specified point in time, like in “appointment time”). Therefore, “Day” is used instead to denote unspecified period of time. No other meaning can possibly be attached to the word, as it appears and being used in those verses.

Here are a few examples:

[1] “…he is the father of Mo’av to this day” (Genesis 19:37-38);

[2] “The lofty looks of man shall be humbled, and the haughtiness of men shall be bowed down, and Jehovah alone shall be exalted on that day” (Isaiah 2:11);

[3] “And it shall come to pass on that day that Jehovah shall beat out his harvest from the strongly flowing river to the Wadi of Egypt, and you shall be gathered up one by one, O Children of Israel” (Isaiah 27:12);

[4] “In that day shall the Lord of Hosts be a glorious crown, beautiful wreath for the remnant of his people” (Isaiah 28:5);

[5] “For the day is near, the day of Jehovah is near, a day of clouds, a time of doom it shall be for the nations” (Ezekiel 30:3);

[6] “In that day people will come to you from Assyria and the cities of Egypt, even from Egypt to the river, and from sea to sea and from mountain to mountain” (Micha 7:12);

[7] “On that day Jehovah will be one and His name One” (Zechariah 14:9).